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ABSTRACT

A half-scale Unmanned Air Vehicle (UAV) was designed and

constructed from composite materials for the Flight Research

Lab at the Naval Postgraduate School. The vehicle was

designed as a technology demonstrator for two studies. First,

for the Tilted Ducted Fan (TDF) vertical flight capability

engine and its stability and control system; and second, for

the tail configuration testing for Longitudinal and Lateral-

Directional stability enhancement of an existing tailless

Unmanned Air Vehicle. Completion of these research and test

objectives should provide the configuration requirements for

a full-scale development vehicle with vertical takeoff and

landing with transition to forward flight.
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I. INTRODUCTION

A. ARCHYTAS, MAN OR MACHINE

Legend has it that around 400 B.C., a Greek scientist,

statesman and colleague of the philosopher Plato by the name

of Archytas conceived of, constructed and successfully flew a

mechanical flying bird. Though no trace of the design

remains, it is appropriate to adopt this name for the first

Unmanned Air Vehicle (UAV) to be designed and built by the UAV

Flight Research Laboratory at the Naval Postgraduate School.

The unique features of the aircraft reflect the innovation and

creativity marked by UAVs since that beginning 2400 years ago.

B. NPS UNMANNED AERIAL VEHICLE GOALS

The purpose of the Unmanned Air Vehicle (UAV) Flight

Research program at the Naval Postgraduate School is support

of the UAV Joint Project Office (JPO) of NAVAIR. The result is

tiLe esLdbilshment of a fa,.Lily of rirerse testbeds of scaled

radio controlled aircraft capable of flight test simulation

and aerodynamic modeling of full size manned and unmanned

aircraft.

These UAV's are used to support Fleet aircraft flight

test requirements for new or potentially hazardous concepts or



in support of entirely new aircraft concepts. These new

concepts have unexplored potentials, and bring with them high

risk and possibly high payoff. The use of smaller, lighter

and less expensively-operated scale UAV's saves money,

manpower and time in the flight test process.

The UAV Flight Research Lab (FRL) has established a range

of flight test capabilities in UAV research and development,

which includes a high Angle-of-Attack (AOA) study capability

of scaled F-16 and F-18 airframes (Figure 1) . The Lab also

pcossesses rotary wing test capability and is studying Higher

Harmoni: Control and vibration reduction with two remotely-

cotrolled helicopters (Figure 2). The program maintains a

Navy EXDRONE delta-wing vehicle (Figure 3).

Cuzrently, the laboratory operates a 1/2-scaled Pioneer

UAV (Figure 4). The Pioneer vehicle is in current fleet use

cnboard battleships and is a derivative of the Israeli combat-

proven Mastiff and Scout airframes. Fleet use of the Pioneer

includes multi-mission capabilities of over-the-horizon

targeting, communications relay and long-range reconnaissance

(Ref 1:p. 38).

The Pioneer program, the most mature of the programs in

the UAV FRL, is a good example of the research potential of

scaled UAVs for modeling fleet aircraft. Development of new

2



Figure 1. F-16 Agil 1e Fighter UAV
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Figure 2. Helicopter UAV
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Figure 3. EXDRONE UAV
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Figure 4. Pioneer UAV
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concepts or flight test of identified problems can be costly

and with the price of the full size Pioneer air vehicle

upwards of $600,000, much can be said for the use of a scaled

UAV for conducting research.

The 1/2-scaled Pioneer UAV model was built, operated and

flight tested at a fraction of the cost of the full scale

vehicle. A loss of the UAV airframe in the event of some

mishap is substantially less costly than would be the loss of

a full size airframe during flight test research.

This scaled Pioneer is currently being instrumented for

flight test missions with c and P measurement systems and a

pitot-static system. Telemetry capability is currently being

installed and tested. In the meantime a seven channel onboard

recorder is used to obtain flight test information.

In the past, the Pioneer in the fleet has experienced

several operational losses during shipboard recoveries due to

the net capture technique as the primary means of recovery.

These losses are financially and operationally unacceptable,

and another means of recovery needs to be found.

This need led to the next step in the NPS UAV program.

The purpose of this thesis was to design and build an airframe

for a proof-of-concept study of the use of a Tilted Ducted Fan

(TDF) as a means of vertical takeoff and recovery aboard Naval

Combatants.

7



The TDF concept consists of an engine and control system

modeled after the Marine AROD (Aerial Remote Operated Device),

an advanced hover design (Figure 5) (Ref 2:p.73). Basically

a shrouded propeller with a four vane control system mounted

at its base, the AROD was developed and proven to have a

successful control system but had serious shortcomings as a

flight vehicle. The program was cancelled due to the

vehicle's lack of forward flight capability.

The school has possession of a full scale Army Aquila

airframe (Figure 6). The Aquila airframe possesses many

positive attributes; for example, it has a low radar cross

section, a simple airframe, and a good range and endurance

capability. Early versions of the design, however,

demonstrated unacceptable longitudinal stability

characteristics at negative AOA and poor lateral-directional

stability at low AOA (Ref 3:p.l).

By combining the Aquila airframe and the engine design of

the AROD in an advanced hover vehicle, an airframe with a

vertical takeoff and landing capability was conceived. With

the addition of a tail structure to the airframe, the

stability problems should be solved. Two problems lead to one

solution, and this solution has the name "Archytas" (Figure

7).

8



Figure 5. AROD



Figure 6. Aquila
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Figure 7. Archytas
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C. AQUILA TO ARCHYTAS

The Archytas design accounts for both the instability of

the Aquila design and the veitical hover capability obtained

by the incorporation of the TDF. To accomplish this in one

airframe, several modifications to the basic Aquila airframe

design were made. First, the Archytas was 1/2-scaled from the

Aquila. Next, the fuselage was modified to contain the engine

mid-fuselage for Center of Gravity (C.G.) thrust in the

vertical flight phase and to allow installation of the tail

and 1:-ing gear mounts for the forward flight mode.

Once the TDF and stability requirement proof-of-concepts

for the Archytas are complete, the modified full scale Aquila

airframe will serve as the testbed for the flight transition

to and from the forward flight mode and for full scale flight

test and development.

Other vertical takeoff concepts, some saucer-like with

counter-rotating props, do not possess the higher dash speeds

obtainable in the fixed wing configurations being limited to

about 70 knots (Ref 4:p.24) . Multi-engine designs with

engines for separate horizontal and vertical flight phases

carry an unused engine during the flight and therefore lose

some payload capability (Ref 5:p.117). These limitations

support the proof-of-concept study of the Archytas as a means

of meeting all requirements in one airframe.
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D. CONCURRENT THESIS

Concurrent thesis work by Blanchette consisted of the

initial downscale of the Aquila and the design and

construction of the TDF (Tilted Tucted Fan) from the AROD (Ref

6). This downscale resulted in an initial fuselage and wing

planform design. Due to several modifications during the

design process, only the wing planform remains scaled to its

original dimensions.

The -s Uy o the TDF, engine mount and control vane

system was accomplished concurrently by Blanchette; however,

the necessary expertise was not available for the three-axis

hover control system, and the controller construction will be

carried out in a future project.
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II. DESIGN GOALS

A. AQUILA DOWNSCALE

Scaling the Archytas to approximately 1/2 scale of the

Aquila was done primarily for the testing of the design

concepts quickly and cheaply before full scale development

proceeded. Parts and supplies, i.e., the engine, servos,

receivers and other components are available from recreational

hobby parts suppliers and are far less expensive and more

readily available then full scale parts would be.

Modifications made as design problems were solved are

fully explained in detail, section by section, in later

chapters. Once the concepts are proven, the full scale

vehicle will be developed and the transition from vertical to

horizontal flight mode accomplished in the full scale modified

Aquila.

B. TDF

The design goal of the TDF was to model the AROD for use

in the Archytas. This process required determining the engine

thrust requirements for the vertical flight mode and designing

a control vane system to operate in the wake of the propeller.

The engine chosen was a 2.67 cubic inch, twin-cylinder,

ignition engine rated at 4 H.P. This engine develops

14



approximately 25 pounds of thrust with a 20 inch propeller.

The size and vibration characteristics of the engine were

ideally suited for our purpose. The engine itself was

shrouded with the propeller to contain the airflow back to the

control vanes.

The control vane system was modeled directly from the

AROD. The sensor package for the controller of the AROD

consists of three rate gyros, a vertical accelerometer and a

vertical gyro. Limited vertical flight is planned until a

suitable control system is installed.

C. TAILBOOM

The tailboom was designed for three configuration

studies. The three configurations will study the amount of

tail effectiveness required to sufficiently enhance the

longitudinal and directional stability characteristics of the

Aquila. The tailless configuration will study the addition of

vectored thrust and control coupling to the original Aquila

(Figure 8). The short boom is a mid-configuration design

study for the system should the tailless configuration prove

inadequate (Ficrure 9). The longboom configuration will test

the stability of a normal tail configuration (Figure 10) . The

actual component design is discussed in the next chapter.
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